The Singularity is Near

The Singularity Is Near: When Humans Transcend Biology is a 2005 non-fiction book about artificial intelligence and the future of humanity by inventor and futurist Ray Kurzweil. Kurzweil describes his law of accelerating returns which predicts an exponential increase in technologies like computers, genetics, nanotechnology, robotics and artificial intelligence. Once the Singularity has been reached, Kurzweil says that machine intelligence will be infinitely more powerful than all human intelligence combined. Afterwards he predicts intelligence will radiate outward from the planet until it saturates the universe. The Singularity is also the point at which machines' intelligence and humans would merge. Kurzweil characterizes evolution throughout all time as progressing through six epochs, each one building on the one before. He says the four epochs which have occurred so far are Physics and Chemistry, Biology and DNA, Brains, and Technology. Kurzweil predicts the Singularity will coincide with the next epoch, The Merger of Human Technology with Human Intelligence.


After the Singularity he says the final epoch will occur, The Universe Wakes Up. Kurzweil explains that evolutionary progress is exponential because of positive feedback; the results of one stage are used to create the next stage. Exponential growth is deceptive, nearly flat at first until it hits what Kurzweil calls "the knee in the curve" then rises almost vertically. In fact Kurzweil believes evolutionary progress is super-exponential because more resources are deployed to the winning process. As an example of super-exponential growth Kurzweil cites the computer chip business. The overall budget for the whole industry increases over time, since the fruits of exponential growth make it an attractive investment; meanwhile the additional budget fuels more innovation which makes the industry grow even faster, effectively an example of "double" exponential growth. Kurzweil dictates evolutionary progress looks smooth, but that really it is divided into paradigms, specific methods of solving problems.


Each paradigm starts with slow growth, builds to rapid growth, and then levels off. As one paradigm levels off, pressure builds to find or develop a new paradigm. So what looks like a single smooth curve is really series of smaller S curves. For example, Kurzweil notes that when vacuum tubes stopped getting faster, cheaper transistors became popular and continued the overall exponential growth. Kurzweil calls this exponential growth the law of accelerating returns, and he believes it applies to many human-created technologies such as computer memory, transistors, microprocessors, DNA sequencing, magnetic storage, the number of Internet hosts, Internet traffic, decrease in device size, and nanotech citations and patents. Kurzweil cites two historical examples of exponential growth: the Human Genome Project and the growth of the Internet. Kurzweil claims the whole world economy is in fact growing exponentially, although short term booms and busts tend to hide this trend. A fundamental pillar of Kurzweil's argument is that to get to the Singularity, computational capacity is as much of a bottleneck as other things like quality of algorithms and understanding of the human brain.


Moore's Law predicts the capacity of integrated circuits grows exponentially, but not indefinitely. He feels confident that a new paradigm will debut at that point to carry on the exponential growth predicted by his law of accelerating returns. Kurzweil describes four paradigms of computing that came before integrated circuits: electromechanical, relay, vacuum tube, and transistors. DNA, spintronics (computing with the spin of electrons), computing with light, and quantum computing. Since Kurzweil believes computational capacity will continue to grow exponentially long after Moore's Law ends it will eventually rival the raw computing power of the human brain. Kurzweil looks at several different estimates of how much computational capacity is in the brain and settles on 1016 calculations per second and 1013 bits of memory. 2045, the onset of the Singularity, he says the same amount of money will buy one billion times more power than all human brains combined today. Kurzweil admits the exponential trend in increased computing power will hit a limit eventually, but he calculates that limit to be trillions of times beyond what is necessary for the Singularity.


Kurzweil notes that computational capacity alone will not create artificial intelligence. He asserts that the best way to build machine intelligence is to first understand human intelligence. The first step is to image the brain, to peer inside it. 2020s when it becomes possible to scan the brain from the inside using nanobots. Once the physical structure and connectivity information are known, Kurzweil says researchers will have to produce functional models of sub-cellular components and synapses all the way up to whole brain regions. The human brain is "a complex hierarchy of complex systems, but it does not represent a level of complexity beyond what we are already capable of handling". Beyond reverse engineering the brain in order to understand and emulate it, Kurzweil introduces the idea of "uploading" a specific brain with every mental process intact, to be instantiated on a "suitably powerful computational substrate". He writes that general modeling requires 1016 calculations per second and 1013 bits of memory, but then explains uploading requires additional detail, perhaps as many as 1019 cps and 1018 bits.

beauty store near me

Leave a Reply

Your email address will not be published. Required fields are marked *